Ponderación de Referenciales por medio del Análisis de Regresión Logística Múltiple

por Ing. Roberto Piol Puppio SOITAVE 260

1. OBJETIVO DEL METODO

Para la implementación del Método de Aproximación al Mercado (marketing approach) es necesario la localización de inmuebles comparables al objeto del avalúo a fin de cumplir el axioma: "Inmuebles Similares de Venderán en un Mercado Abierto a Precios Similares".

La fuente principal de Datos Comparables o Referenciales (en Venezuela) son las Oficinas Subalternas de Registro Público de la localidad donde se ubique el bien inmueble objeto del avalúo; sin embargo existen otras fuentes tales como lo son las Notarías, las Oficinas Municipales de Catastro y la Prensa.

Nos referimos a las Notas del Registro como la fuente principal de Datos Referenciales ya que los mismos son "datos ciertos" que cualquier persona puede consultar y evidenciar, ya que la información es pública y los mismos son certificados por un funcionario público (Registrador), que además de verificar quienes son los otorgantes (vendedor y comprador), comprueba la tradición legal del inmueble¹.

El problema fundamental de las Notas de Registro, consiste en que una parte significativa de las operaciones de Compra-Venta protocolizadas, pueden estar sub-valoradas en función de la evasión

1

¹ Aunque el Notario y el Registrador son funcionarios públicos que certifican y dan fe de la operación realizada mediante Documento Público; la diferencia fundamental entre estos dos servidores público radica en que solo el segundo de ellos puede verificar la tradición legal del inmueble.

fiscal de los otorgantes. Sin embargo, desde hace unos pocos años esta costumbre de protocolizar por menos del valor, ha disminuido considerablemente en función de el Nuevo Régimen de Indexación implementado por el Estado Venezolano para el cálculo del Impuesto Sobre la Renta y la reciente autonomía de los Registros Públicos.

Ante el hecho anterior, pareciese que la prensa tiende a generar referenciales o comparables mas confiables que los que se pudiesen localizar en una Oficina Subalterna de Registro Público; sin embargo la realidad es otra: En los avisos de prensa, solo se indica el precio que una de las partes "aspira" por su inmueble, no indicando el precio definitivo pactado o concertado por "ambas partes" en la operación de compra-venta.

Por lo tanto, observamos que ambas fuentes (Registro y Prensa), tienen "fortalezas" y "debilidades", pudiendo concluir que: "Debería existir una ponderación entre ambas, de la que resultase una opinión de valor mas afinada que la de tomar individualmente cada una de ellas"².

El objetivo de esta monografía consiste en presentar una hipótesis sobre el manejo simultáneo de referenciales provenientes del Registro y de la Prensa mediante la técnica del Análisis de Regresión Logística Múltiple con la finalidad de verificar la teoría anterior

veces sin ningún tipo de consideración ténica)

_

² Mezclar elementos de ambas fuentes de referenciales resultaría sin sentido ya que las mismas tienen un significado diferente; una se corresponde con operaciones acordadas entre las partes, mientras que la otra se corresponde a una simple aspiración de un precio (la mayoría de las

2.- INTRODUCCION AL ANALISIS DE REGRESION LOGISTICA

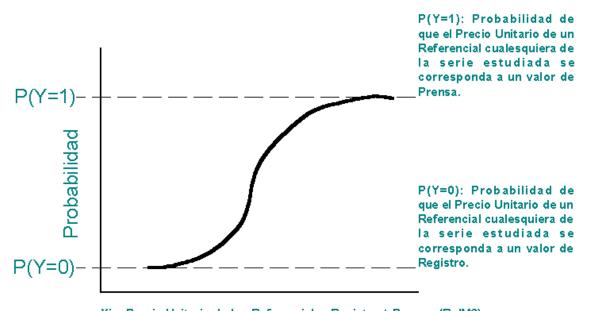
El análisis de regresión logística es la técnica para el estudio de la relación entre una o mas variables independientes (X1, X2,X3....Xn) y una variable dependiente de tipo dicotómica³.

Se define como variable dicotómica aquella que solo admite dos categorías que definen opciones o características mutuamente excluyentes u opuestas tales como (Y=SI, Y=NO); (Y=0, Y=1), (Y=Encendido, Y=Apagado).

Un modelo de regresión logística permite estimar o predecir la probabilidad de que un individuo posea una característica (Y=Registro , Y=Oferta) en función de una determinada o unas determinadas características individuales (X1=Precio Unitario, X2=Edad, X3=AreaXn).

La diferencia fundamental entre el modelo de regresión lineal y de regresión logística es que el primero predice el valor medio de la variable dependiente (Y) a partir de una o mas variables independientes (X1, X2, X3 ... Xn); mientras que el segundo permite predecir la proporción de una de las dos categorías de la variable dependiente dicotómica (Y=SI , Y=NO) en función de una o mas variables independientes (X1, X2, X3 ... Xn).

3


^{.3} El modelo de regresión logística múltiple, también es aplicable a variables dependientes (Y) que son politómicas (3 o mas categorías); sin embargo esta monografía solo se abordará el estudio de la regresión logística en el caso de que la variable dependiente sea dicotómica (Y=SI, Y=NO).

La probabilidad, por definición, solo puede incluir un valor comprendido entre 0 y 1; por lo tanto hay que desarrollar un modelo matemático que pueda estimar valores de P(Y=1)⁴ dentro del rango real de 0 a 1.

El modelo matemático que mejor estima tal probabilidad, debido a que restringe los valores a su rango $0 < \pi < 1$, es el siguiente:

$$\pi = \frac{e^{a+bX}}{1+e^{a+bX}}$$

Este modelo comúnmente presenta una forma de "S", limitada en el eje de las Ordenadas entre los valores 0 y 1

Xi: Precio Unitario de los Referenciales Registro + Prensa (Bs/M2)

El modelo antes descrito se denomina Función Logística.

⁴ P(Y=1) se define como la probabilidad de que ocurra el acontecimiento mientras que P(Y=0) se define como el rechazo a que ocurra el acontecimiento y comúnmente se representa de la forma 1-P

Sustituyendo π por la expresión: P(Y=1) ⁵.o sea la probabilidad de que el Precio Unitario de un Referencial cualesquiera de la serie se corresponda a un "Valor de Prensa", se obtendrá que la Función Logística vendrá representada por el modelo No Lineal siguiente:

$$P(Y = 1) = \frac{e^{a+bX}}{1+e^{a+bX}}$$

Este es el momento de interpretar el significado de esta función en base a la problemática de los referenciales obtenidos en el Registro y los obtenidos a través de la Prensa:

En teoría los Referenciales de Prensa y Registro deberían ser muy similares para cumplir con el axioma del mercado (inmuebles similares se venderán a precios similares). Sin embargo no siempre sucede así, tal como antes se ha explicado.

⁵ En el caso muy específico de esta monografía, donde los datos a ser analizados son la serie de Referenciales de Registro y de Prensa; se tomarán en cuenta las siguientes definiciones:

a) Se define como P(Y=1) a la probabilidad de que el Precio Unitario de un Referencial cualesquiera de la serie estudiada se corresponda a un valor de Prensa.

b) Se define como P(Y=0) a la probabilidad complementaria o sea la probabilidad de que el Precio Unitario de un Referencial cualesquiera de la serie se corresponda a un valor de Registro.

P(Y=1) de cada referencial de la serie obtenida en la Oficina de Registro, se interpretará como la probabilidad de que el Precio Unitario de cada uno de ellos se equipare con los Precios Unitarios de la Prensa.

Para el caso de un referencial de registro, una P(Y=1) = 0.65 indica que, la probabilidad de ese referencial de Registro en equipararse con la serie de referenciales de Prensa es del 65%.

El mismo razonamiento es válido para los referenciales de Prensa, una P(Y=1) = 0.80, indica que el referencial de Prensa tiene una Probabilidad del 80% de ser equiparado a su propia serie (como en realidad es).

Para el mismo referencial de prensa, la Probabilidad Complementaria (Y=0) = 0.20 = 1-P(Y=1) = 1-0.80; indica que, la probabilidad de un referencial de Prensa en equipararse con la serie de referenciales de Registro es del 20%.

3. DEMOSTRACION DEL METODO PARA EL CASO DE VARIABLES DICOTOMICAS

En el siguiente ejemplo se desarrollará la metodología aquí explicada. Se estudiará un Modelo de Regresión Logística Simple, o sea una variable dicotómica [(Y=0) ; (Y=1)] dependiente y una variable independiente (X).

Se tiene una serie de referenciales obtenidos de dos fuentes:

- a) Oficina Subalterna del Distrito Sucre del Estado Sucre
- b) Avisos Clasificados del Periódico Siglo XXI

correspondientes todos a Precios Unitarios de Apartamentos en Propiedad Horizontal en el casco central de la ciudad de Cumaná, Estado Sucre.

El primer paso, consiste en la Identificación de la Variable Dicotómica Dependiente: En este caso se asignará como P(Y=1) a los datos obtenidos de la prensa y se asignará como P(Y=0) a los datos obtenidos de la Oficina de Registro.

La Unica Variable Independiente del modelo de regresión será el Precio Unitario de Apartamentos (X), expresado en Bs/M2.

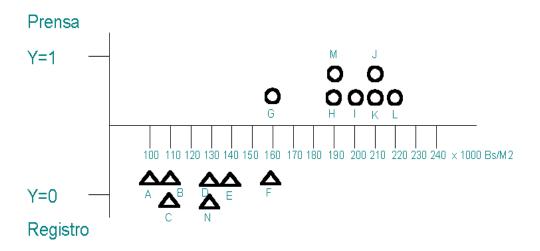
Seguidamente se clasificarán y ordenarán los datos de la manera siguiente:

PRENSA

FEEF	VARIABLE INDEPENDIENTE	VARIABLE DICOTOMICA
	Bs.M2 (X)	Dependiente (y)
G	160,000	1
Н	190,000	1
	200,000	1
J	210,000	1
K	210,000	1
L	220,000	1
М	190,000	1

REGISTRO

REF	VARIABLE INDEPENDIENTE Bs/M2	VARIABLE DICOTOMICA DEPENDIENTE
	(X)	(Y)
Α	100,000	0
В	110,000	0
С	110,000	0
D	130,000	0
Е	140,000	0
F	160,000	0
N	130,000	0


Una vez examinado los datos anteriores, hay que destacar lo siguiente:

- a) Los Datos fueron clasificadas de acuerdo con su origen
- b) Los Datos fueron ordenadas de menor a mayor de acuerdo al valor de la variable independiente (X)⁶

⁶ Estas series se ordenarán de esta manera solo para hacer mas comprensible su representación gráfica. El ordenar las variables no afectará el resultado.

c) Las Variables Dicotómicas Dependientes fueron definidas Y=1 si el dato es tomado de la Prensa, ó Y=0 si el dato es tomado de la Oficina de Registro⁷

La representación gráfica de estas series es la siguiente:

El análisis de Regresión Logística, no es lineal; por lo tanto hay que utilizar un paquete estadístico dedicado, capaz de resolver este tipo de correlación no lineal. Para este ejemplo se utilizará el módulo "Nonlineal Regression⁸", incluído en el software StatGraphics 5.0 para DOS, sin embargo es posible resolver este tipo de regresiones con otros programas.

En primer lugar se preparan los datos a enterar al sowftware estadístico:

⁷ Tal como es su definición las Variables Dicotómicas son mutuamente excluyentes: El Referencial o fue tomado de la Prensa (Y=1) o fue tomado del Registro (Y=0). Las variables dicotómicas no pueden tomar un valor diferente a 0 ó 1 para este caso.

⁸ El procedimiento de "Regresión No-Lineal", obtiene los parámetros estimados por el método de los mínimos cuadrados en un modelo de regresión no-lineal. El procedimiento utiliza un algoritmo de búsqueda para determinar los parámetros que minimizan el residual de la suma de los cuadrados. Este procedimiento fue desarrollado por el Prof. Marquardt en 1963, siendo complementado por los estadísticos Drapper y Smith en 1966.

VARIABLE INDEPENDIENTE Bs/M2 (X)	VARIABLE DICOTOMICA DEPENDIENTE (Y)
160,000	1
190,000	1
200,000	1
210,000	1
210,000	1
220,000	1
190,000	1
100,000	0
110,000	0
110,000	0
130,000	0
140,000	0
160,000	0
130,000	0

Análisis de la Salida del Programa Estadístico:

Model Fitting Results			
Coefficient 1 Coefficient 2	estimate -6.04672443 .00003009	stnd.error 1.59792032 .00000846	ratio -3.78412 3.55670
Total iterations = 5			luations = 16

source	sum of squares	df	mean square	ratio
Model	*		3.113860	48.384394
Error	.772280	12	.064357	
Total	7.000000	14		
Total (corr.)	3.500000	13		

Las dos salidas anteriores se interpretan de la siguiente manera:

1) El modelo de correlación logística quedará conformado de la siguiente manera:

en el modelo de Regresión Logística:

$$P(Y = 1) = \frac{e^{a+bX}}{1+e^{a+bX}}$$

se sustituyen los valores de los parámetros **a** y **b** del modelo:

Donde: Coefficient 1 = -6.04672443 = aCoefficient 2 = 0.00003009 = b

$$P(Y=1) = \frac{e^{-6.04672443\cdot0.00003009X}}{1 + e^{-6.04672443\cdot0.00003009X}}$$

2) R-Squared = 0.779348, se refiere al coeficiente de regresión; indicando que el modelo no-lineal explica el fenómeno (probabilidad de que un referencial sea de registro o prensa) en un 78%, indicando que la correlación existe.

4.0 APLICACIÓN DE LA CORRELACION LOGISTICA EN LA PONDERACION DE LOS REFERENCIALES

En el punto anterior, se estudió paso a paso la obtención del Modelo de Correlación Logística de dos series de referenciales.

En este ejemplo numérico, se aplicará el método estudiado a fin de obtener en un avalúo real la ponderación entre los referenciales de la prensa y los referenciales del registro a fin de generar un valor ponderado en proporción a las dos series de datos.

Se desea obtener el valor de una parcela de terreno de 1,500 M2 en el sector conocido como Los Villarroel, Municipio Autónomo Díaz del Esto Nueva Esparta.

4.1 Clasificación y Orden de los Datos Referenciales:

REGISTRO DTTO. DIAZ / NVA. ESPARTA

PEF	AREA (M2)	FECHA PROT.	P.U(8s M2)
Α	1,850	12/01/98	100
В	1,803	1 2/01/98	100
С	1,741	12/12/96	100
D	1,694	02/02/98	105
E	1,647	01/03/98	115
F	1,625	24/01/98	120
G	1,578	05/01/98	120
Н	1,531	02/02/98	125
	1,399	15/12/97	130
J	1,352	21/02/98	140
K	1,420	01/03/98	140
L	1,373	01/03/98	150

PERIODICO: EL SOL DE MARGAR 31/3/98

31/3/30			
PEF	AREA (M2)	P.U(8s M2)	
1	1,850	160	
2	1,740	165	
3	1,630	165	
4	1,520	170	
5	1,410	170	
6	1,300	180	
7	1,190	190	
8	1,080	195	
9	970	195	
10	860	195	

4.2 Corrección por Area:

AREA DEL INMUEBLE A TASAR:	1,500.00 M2

REGISTRO

PEF	AREA (M2)	F.C.Area
Α	1,850	1.0117
В	1,803	1.0101
С	1,741	1.0080
D	1,694	1.0065
E	1,647	1.0049
F	1,625	1.0042
G	1,578	1.0026
Н	1,531	1.0010
	1,399	0.9964
J	1,352	0.9945
K	1,420	0.9972
L	1,373	0.9954

PRENSA

PEF	AREA (M2)	F.C.Area
1	1,850	1.0117
2	1,740	1.0080
3	1,630	1.0043
4	1,520	1.0007
5	1,410	0.9968
6	1,300	0.9923
7	1,190	0.9870
8	1,080	0.9806
9	970	0.9727
10	860	0.9628

4.3 Corrección por Actualización

TASA PASIVA PROMEDIO 90 DIAS	25.00%	

REGISTRO

PEF	F.PROTOCOL.	F.C.Actual.
Α	12/01/98	1.0488
В	12/01/98	1.0488
С	12/12/96	1.3361
D	02/02/98	1.0355
Е	01/03/98	1.0185
F	24/01/98	1.0412
G	05/01/98	1.0533
Н	02/02/98	1.0355
	15/12/97	1.0669
J	21/02/98	1.0235
K	01/03/98	1.0185
Ĺ	01/03/98	1.0185

PRENSA

PEF	F.PROTOCOL.	F.C.Actual
1	-,-	1.0000
2		1.0000
3		1.0000
4	-,-	1.0000
5	-,-	1.0000
6	-,-	1.0000
7		1.0000
8		1.0000
9	-,-	1.0000
10	-,-	1.0000
	-	

 $F.C.Actual. = (1+i)^n$

i: Tasa..Pasiva..DPF = 90..dias

n : Tiempo..desde..la..Protocolización

4.4 Cálculo del Valor Unitario Promedio de cada Serie:

REGISTRO

PEF	P.UNIT. (Bs M2)	F.C.Area	F.C.Actual	Y.UNIT.CORR
Α	100.00	1.0117	1.0488	106.11
В	100.00	1.0101	1.0488	105.94
С	100.00	1.0080	1.3361	134.68
D	105.00	1.0065	1.0355	109.43
E	115.00	1.0049	1.0185	117.70
F	120.00	1.0042	1.0412	125.47
G	120.00	1.0026	1.0533	126.72
Н	125.00	1.0010	1.0355	129.57
	130.00	0.9964	1.0669	138.20
J	140.00	0.9945	1.0235	142.50
K	140.00	0.9972	1.0185	142.19
Ĺ	150.00	0.9954	1.0185	152.07

VALOR UNITARIO PROMEDIO REGISTRO:

127.55

PRENSA

PEF	P.UNIT. (Bs M2)	F.C.Area	F.C.Actual	Y.UNIT.CORR
1	160.00	1.0117	1.0000	161.87
2	165.00	1.0080	1.0000	166.32
3	165.00	1.0043	1.0000	165.71
4	170.00	1.0007	1.0000	170.12
5	170.00	0.9968	1.0000	169.46
6	180.00	0.9923	1.0000	178.61
7	190.00	0.9870	1.0000	187.53
8	195.00	0.9806	1.0000	191.22
9	195.00	0.9727	1.0000	189.68
10	195.00	0.9628	1.0000	187.75

VALOR UNITARIO PROMEDIO PRENSA:

176.83

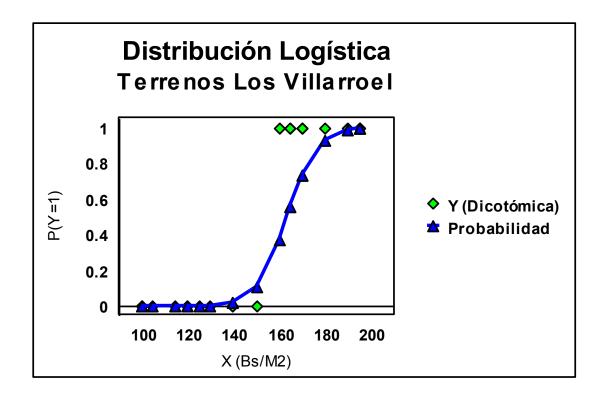
4.5 Cálculo de los pesos de cada Serie aplicando la metodología de Regresión Logística:

4.5.1 Serie Sin Corregir:

PIEF	X(B\$.M2)	Y(0,1)
Α	100.00	0
В	100.00	0
С	100.00	0
D	105.00	0
E	115.00	0
F	120.00	0
G	120.00	0
Н	125.00	0
	130.00	0
J	140.00	0
K	140.00	0
L	150.00	0
1	160.00	1
2	165.00	1
3	165.00	1
4	170.00	1
5	170.00	1
6	180.00	1
7	190.00	1
8	195.00	1
9	195.00	1
10	195.00	1

Y=0: REGISTRO Y=1: PRENSA

4.5.2 Salidas del Paquete Estadístico:


Mo	odel Fitting Res	sults	
Coefficient 1 Coefficient 2	estimate -25.0016116 .1529513	stnd.error 4.91894416 .03017931	ratio -5.08272 5.06808
otal iterations = 18	 Тс	tal function eva	luations = 55

source	sum of squares	df	mean square	ratio
Model	9.62560	2	4.81280	257.09698
Error	.374396	20	.018720	
Total	10.00000	22		
Total (corr.)	5.454545	21		

4.5.3 Modelo de Correlación Logística:

$$P(Y=1) = \frac{e^{-25.00161160.1529513X}}{1 + e^{-25.00161160.1529513X}}$$

4.5.4 Representación Gráfica:

4.5.5 Cálculo de la Ponderación (Registro vs. Prensa)

Seguidamente se procederá a calcular los pesos proporcionales correspondiente al Promedio Corregido de la serie de Referenciales de Registro y de la serie de Referenciales de Prensa.

VALOR UNITARIO PROMEDIO REGISTRO: 127.55 Bs/M2

VALOR UNITARIO PROMEDIO PRENSA: 176.83 Bs/M2

Se calculará la Probabilidad P(Y=1) correspondiente al Promedio Corregido de la Serie de Referenciales de Prensa:

$$P(Y=1) = \frac{e^{-25.00161160.1529513176.83}}{1 + e^{-25.00161160.1529513176.83}}$$

$$P(Y=1) = 0.8854$$

Se interpretará P(Y=1) = 0.8854, como la Probabilidad de que el Promedio Corregido de la Serie de Referenciales de Prensa sea efectivamente un Valor de Prensa; por lo tanto su Probabilidad Complementaria P(Y=0) será 1 - P(Y=1) = 1 - 0.8854 = 0.1146.

Por lo tanto los Pesos Proporcionales para cada uno de los Promedios (Referenciales de Registro y Referenciales de Prensa) serán:

Promedio Corr. Prensa x 0.8854 = 176.83 x 0.8854 =	(Bs/M	156.57
Promedio Corr. Registro \times 0.1146 = 127.55 \times 0.1146 = 1	(Bs/M	14.62
Promedio Ponderado Prensa/Registro =	(Bs/M	171.19

4.5.6 Cálculo del Valor del Terreno:

AREA M2	MUNITES/M2	TOTAL Bs.
1,500.00	171.19	256,785.00

5.0 LA REGRESION LOGISTICA MULTIPLE

Toda la teoría vista hasta ahora (Regresión Logística Simple), aplicada a Dos (2) Variables, una independiente y la otra dependiente y dicotómica, es válida en el caso de la Regresión Logística Múltiple.

La Regresión Logística Múltiple podrá expresarse de la siguiente manera:

$$P(Y=1) = \frac{e^{a+bX1+cX2+dX3+...nXn}}{1+e^{a+bX1+cX2+dX3+...nXn}}$$

Este modelo genera una Probabilidad (del 0 al 1) en base a múltiples variables independientes.

Debido a que **una de las variables independientes**, necesariamente debe ser el **Precio Unitario** y si también se seleccionara la Variable Independiente Area; se podría presentar problemas de Multicolinealidad entre esas dos variables, por estar una función de la otra.

En estos casos es obligatorio el uso de la Matriz de Correlación para determinar si efectivamente las dos variables independientes estuviesen autocorrelacionadas.

El paquete estadístico, deberá poder generar la Matriz de Correlación a fin de poder detectar problemas de Multicolinealidad entre las variables independientes. En caso de que no fuera así, es preferible no enterar en el modelo la Variable Independiente Area.

5.1 Ejemplo de la aplicación del Método:

Se necesita saber el Valor de un Apartamento con un área de 75 M2, tiene 5 años de haberse construído y que está ubicado en la urbanización Bella Vista de la ciudad de Maracaibo.

Se obtuvieron los siguientes referenciales de apartamentos con áreas muy similares, tomados de la Oficina Subalterna del 1er. Circuito del Dtto. Maracaibo y del periódico "Panorama":

EXPRESADO EN MILES DE BOLIVARES

REGISTRO

REF	P.UNIT (Bs.M2)	EDAD (AÑOS)
1	185	12
2	195	11
3	195	9
4	200	8
5	210	6
6	210	5
7	220	4
8	225	3
9	225	3

PRENSA

REF	P.UNIT (8s M2)	EDAD (AÑOS)
Α	240	2
В	240	2
С	250	1
D	250	1
Е	255	1

5.1.1 Corrección por Depreciación y Obsolescencia:

REGISTRO

REF	EDAD AÑOS	VIDA UTIL	FACTOR e/v	ESTADO CONSERV	FACTOR ROSS-H	DEPRECIA	FACTOR CORREC
*	5	60	0.08	2.0	0.0673	0.9327	1.0000
1	12	60	0.20	2.5	0.1912	0.8088	1.1532
2	11	60	0.18	2.5	0.1785	0.8215	1.1354
3	9	60	0.15	2.5	0.1602	0.8398	1.1106
4	8	60	0.13	2.0	0.0968	0.9032	1.0327
5	6	60	0.10	2.0	0.0788	0.9212	1.0125
6	5	60	0.08	2.0	0.0673	0.9327	1.0000
7	4	60	0.07	2.0	0.0617	0.9383	0.9940
8	3	60	0.05	1.5	0.0266	0.9734	0.9582
9	3	60	0.05	1.5	0.0266	0.9734	0.9582

PRENSA

PEF	EDAD	VIDA	FACTOR	ESTADO	FACTOR	DEPRECIA	FACTOR
	AÑOS	UNL	e/v	CONSERV	ROSS-H		COPPEC.
*	5	60	0.08	2.0	0.0673	0.9327	1.0000
Α	2	60	0.03	1.5	0.0158	0.9842	0.9477
В	2	60	0.03	1.5	0.0158	0.9842	0.9477
С	1	60	0.02	1.0	0.0102	0.9898	0.9423
D	1	60	0.02	1.0	0.0102	0.9898	0.9423
Е	1	60	0.02	1.0	0.0102	0.9898	0.9423

5.1.2 Calculo de los Valores Unitarios Promedio Corregidos:

REGISTRO

Ber	RUNIT (BIVM2)	F.C.dep	V.UNIT.CORR
1	185	1.1532	213.34
2	195	1.1354	221.40
3	195	1.1106	216.57
4	200	1.0327	206.54
5	210	1.0125	212.63
6	210	1.0000	210.00
7	220	0.9940	218.68
8	225	0.9582	215.60
9	225	0.9582	215.60

VALOR UNITARIO PROMEDIO REGISTRO: 214.48 Miles Bs/M2

PRENSA

HEF	UNIT, (Bs.M	F.C.Area	Y UNIT CORR
Α	240	0.9477	227.45
В	240	0.9477	227.45
С	250	0.9423	235.58
D	250	0.9423	235.58
E	255	0.9423	240.29

VALOR UNITARIO PROMEDIO PRENSA: 233.27 Miles Bs/M2

5.1.3 Cálculo de la Ponderación (Registro vs. Prensa)

5.1.3.1 Seguidamente se procederá a calcular los pesos proporcionales correspondiente al Promedio Corregido de la serie de Referenciales de Registro y de la serie de Referenciales de Prensa.

VALOR UNITARIO PROMEDIO REGISTRO: 214.48 Miles Bs/M2

VALOR UNITARIO PROMEDIO PRENSA: 233.27 Miles Bs/M2

5.1.3.2 Serie sin Corregir:

PEF	Χı	X2	Y (0.1) DICOTOM.
	PUNIT	EDAD	DICO (OM)
1	185	12	0
2	195	11	0
3	195	9	0
4	200	8	0
5	210	6	0
6	210	5	0
7	220	4	0
8	225	3	0
9	225	3	0
Α	240	2	1
В	240	2	1
С	250	1	1
D	250	1	1
Е	255	1	1

Y = 0 : Registro Y = 1 : Prensa

5.1.3.3 Salidas del Paquete Estadístico:

M	Iodel Fitting Res	sults	
Coefficient 1 Coefficient 2	estimate -30.3679958 .1222675	.0794471	ratio -1.48959 1.53898
Coefficient 3	2.4040593	4.4857472	.53593

source	sum of squares	df	mean square	ratio
Model	4.620201	3	1.540067	44.604499
Error	.379799	11	.034527	
Total	5.00000	14		
Total (corr.)	3.214286	21		

Covariance Matrix

		P.U	EDAD
	Y(0,1)	XI	X 2
Y(0,1)	1,0000		
PU XI	-1.6192	1,0000	
EDAD X2	-84.0573	0.3246	1,0000

- 5.1.3.4 Análisis de las Salidas del Paquete Estadístico
- a) El modelo de Correlación Logística Múltiple es:

$$P(Y=1) = \frac{e^{-30.36799580.122267\$X1 + 2.404059\$X2}}{1 + e^{-30.36799580.122267\$X1 + 2.404059\$X2}}$$

Donde: X1: Variable Precio Unitario

X2: Variable Edad

b) No existe Multicolinealidad entres las Variables Independientes.

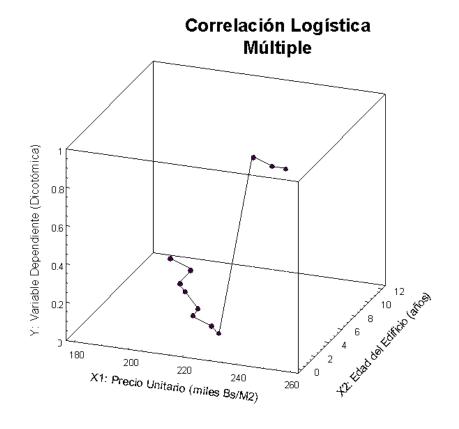
- c) El Coefieciente de Determinación indica que el fenómeno es explicado por las Variables X1, X2 y Y en un 88.18%.
- 5.1.3.5 Se calculará la Probabilidad P(Y=1) correspondiente al Promedio Corregido de la Serie de Referenciales de Prensa y a la Edad del Edificio:

$$P(Y=1) = \frac{e^{-30.36799580.122267\$233.27 + 2.404059\$5}}{1 + e^{-30.36799580.122267\$233.27 + 2.404059\$5}}$$

$$P(Y=1) = 0.99$$

Se interpretará P(Y=1) = 0.99, como la Probabilidad de que el Promedio Corregido de la Serie de Referenciales de Prensa sea efectivamente un Valor de Prensa; por lo tanto su Probabilidad Complementaria P(Y=0) será 1 - P(Y=1) = 1 - 0.99 = 0.01.

Por lo tanto los Pesos Proporcionales para cada uno de los Promedios (Referenciales de Registro y Referenciales de Prensa) serán:


Promedio Corr. Prensa x 0.99 = 233.27 x 0.99 =	230.94
Promedio Corr. Registro x 0.01 = 214.48 x 0.01 =	2.14
Promedio Ponderado Prensa/Registro =	233.08

En Miles de Bolívares por M2

5.1.3.6 Cálculo del Valor del Apartamento:

AREA:	75 M2
AREA: VALOR UNIT.:	233.08 miles de Bs/M2
VALOR TOTAL:	17,481,000 Bs.

5.2 Representación Gráfica:

6.0 BIBLIOGRAFIA

- ALVAREZ CACERES, R., Estadística multivariante y no paramétrica con SPSS, Madrid, Editorial Díaz Santos, 1994.
- CARRASCO, J. L. y HERNAN, M. A., Estadística multivariante en las ciencias de la vida, Madrid, Editorial Ciencia 3, 1993.
- HOSMER, D. W.; TABER, S y LEMESHOW, S., Applied logistic regression, New York, Editorial John Wiley, 1989
- JOVELL, A. J., Análisis de regresión logística, Madrid, Ediciones del Centro de Investigaciones Sociológicas, 1995
- KLEINBAUM, D.G., Logistic regression. A self-learning text, New York, Editorial Springer-Verlag, 1994
- PIOL PUPPIO, R., Herramientas estadísticas básicas, 2da. parte: Análisis de variables múltiple, SOITAVE, 1990 1997

Caracas, 6 de Abril de 1998